Abstract
Characterization experiments have been carried out so as to investigate the effects of fusion-produced neutrons on the x-ray-energy responses of semiconductor detectors for x-ray tomography in the Joint European Torus (JET) tokamak (n-type silicon) and the GAMMA 10 tandem mirror (p-type silicon). Neutron effects on the x-ray-energy responses of these detectors are studied using synchrotron radiation from a 2.5 GeV positron storage ring at the Photon Factory. Changes in the material properties of the detectors have been investigated using an impedance analyzer to estimate neutron effects on x-ray-sensitive depletion thicknesses. A cyclotron accelerator is employed for well-calibrated neutron irradiation onto these plasma x-ray detectors; a fluence of 2–5×1013 neutrons/cm2 is utilized for simulating the effects of fusion-produced neutrons in JET. Modifications of the x-ray responses after neutron exposure due to fusion plasma shots in JET as well as cyclotron-produced neutron irradiations are found to have a functional dependence on x-ray energy. Also, recovery of the detector energy response is found when detector bias is applied. Our theory consistently interprets such properties in terms of the neutron effects on the diffusion length and the resistivity of detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.