Abstract

Transformation of nonsubstituted and alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) by the benthic invertebrate Nereis diversicolor was compared in this study. Pyrene and 1-methylpyrene were used as model compounds for nonsubstituted and alkyl-substituted PAHs, respectively. Qualitative and quantitative analyses of metabolites and parent compounds in worm tissue, water, and sediment were performed. Transformation of 1-methylpyrene generated the benzylic hydroxylated phase I product, 1-pyrenecarboxylic acid that comprised 90% of the total metabolites of 1-methylpyrene, and was mainly found in water extracts. We tentatively identified 1-methylpyrene glucuronides and 1-carbonylpyrene glycine as phase II metabolites not previously reported in literature. Pyrene was biotransformed to 1-hydroxypyrene, pyrene-1-sulfate, pyrene-1-glucuronide, and pyrene glucoside sulfate, with pyrene-1-glucuronide as the most prominent metabolite. Transformation of 1-methylpyrene (21% transformed) was more than 3 times as efficient as pyrene transformation (5.6% transformed). Because crude oils contain larger amounts of C₁-C₄-substituted PAHs than nonsubstituted PAHs, the rapid and efficient transformation of sediment-associated 1-methylpyrene may result in a high exposure of water-living organisms to metabolites of alkyl-substituted PAHs, whose toxicities are unknown. This study demonstrates the need to consider fate and effects of substituted PAHs and their metabolites in risk assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.