Abstract
The extracellular matrix serves as structural support for cells and provides biophysical and biochemical cues for cell migration. Topography, material, and surface energy can regulate cell migration behaviors. Here, the responses of MC3T3-E1 cells, including migration speed, morphology, and spreading on various platform surfaces, were investigated. Polydimethylsiloxane (PDMS) micropost sensing platforms with nanopillars, silicon oxide, and titanium oxide on top of the microposts were fabricated, and the dynamic cell traction force during migration was monitored. The relationships between various platform surfaces, migration behaviors, and cell traction forces were studied. Compared with the flat PDMS surface, cells on silicon oxide and titanium oxide surfaces showed reduced mobility and less elongation. On the other hand, cells on the nanopillar surface showed more elongation and a higher migration speed than cells on silicon oxide and titanium oxide surfaces. MC3T3-E1 cells on microposts with nanopillars exerted a larger traction force than those on flat PDMS microposts and had more filopodia and long protrusions. Understanding the relationships between platform surface condition, migration behavior, and cell traction force can potentially lead to better control of cell migration in biomaterials capable of promoting tissue repair and regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.