Abstract

n-3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n-3 PUFAs and HSR + n-6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n-3 and n-6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n-3 PUFAs had an advantage over n-6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n-3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n-3 PUFAs to patients recovering from ischemia-reperfusion.

Highlights

  • One of the features of the intestinal barrier, besides the capacity to absorb nutrients, is the ability to recover from damage caused by gut pathogens

  • Bacterial translocation occurs once the intestinal barrier function is damaged

  • Bacterial culture and colony counting were used to evaluate the severity of damage to intestinal barrier function

Read more

Summary

Introduction

One of the features of the intestinal barrier, besides the capacity to absorb nutrients, is the ability to recover from damage caused by gut pathogens. The intestinal barrier prevents the commensal organisms from entering the circulation. Surgical patients often experience ischemia-reperfusion injury (IRI) because of trauma, severe blood loss and septic shock [1]. The intestinal mucosa is one of the tissues most frequently affected by IRI [2,3], resulting in impaired intestinal barrier function and triggering a series of inflammatory reactions. Various models that completely blocked regional intestinal blood flow were used to study intestinal IRI [5,6,7]. The most common causes of intestinal IRI in surgical patients and those suffering from trauma are systemic hypovolemia and hypoperfusion [1].

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call