Abstract

The microbiota in gastrointestinal tracts is recognized to play a pivotal role in the health of their hosts. Music and noise are prevalent environmental factors in human society and animal production and are reported to impact their welfare and physiological conditions; however, the information on the relationship between the microbiota, physiological status, and sound is limited. This study investigated the impact of music and white noise exposure in mice through 16s rRNA gene sequencing, enzyme assay, and qPCR. The results demonstrate that white noise induced oxidative stress in animals by decreasing serum SOD and GSH-PX activity while increasing LDH activity and MDA levels (p < 0.05). Conversely, no oxidative stress was observed in the music treatment group. The relative gene expression of IFN-γ and IL-1β decreased in the white noise group compared to the music and control groups. The 16s rRNA gene amplicon sequencing revealed that Bacteroidetes, Firmicutes, Verrucomicrobia, and Proteobacteria were dominant among all the groups. Furthermore, the proportion of Firmicutes increased in the music treatment group but decreased in the white noise treatment group compared to the control group. In conclusion, white noise has detrimental impacts on the gut microbiota, antioxidant activity, and immunity of mice, while music is potentially beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.