Abstract

We investigate theoretically the parametric frequency comb generation in silicon microresonators at telecom and mid-infrared (MIR) wavelengths in the presence of multiphoton absorption and free-carrier effects using a modified Lugiato-Lefever model. We show that parametric oscillation may occur at MIR wavelengths, provided that the free-carrier lifetime is sufficiently short or the optical pump power is sufficiently low, but is inhibited at telecom wavelengths. In addition, we propose an etchless, air-clad silicon microresonator that enables an octave-spanning frequency comb in a completely passive device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call