Abstract

Using a groundwater flow model and long historical meteorological time series data, the evolution of the groundwater flow regime in a multi-layered groundwater flow basin in northern Belgium during the last one and a half centuries (since 1833) is reconstructed. Model output parameters such as piezometric levels, depth to water table, seepage fluxes in the valleys and calculated baseflow to the river system are presented and inter-annual and decadal variations are evaluated against seasonal fluctuations. The main time-varying boundary condition in the model is the aquifer recharge which was estimated using the method of Thornthwaite and Mather based on precipitation and temperature data. The model does not take into account changes in boundary conditions due to changes in land use (deforestation, drainage of cultivated land) or groundwater exploitation. Variations in model output parameters are therefore only due to climatological forcing. Only the natural non-exploited state of the aquifer is considered. Although few historical piezometric measurements are available to verify model output, the results give an indication of the natural hydrodynamic variations on a time scale of decades. Citation Van Camp, M., Coetsiers, M., Martens, K. & Walraevens, K. (2010) Effects of multi-annual climate variability on the hydrodynamic evolution (1833 to present) in a shallow aquifer system in northern Belgium. Hydrol. Sci. J. 55(5), 763–779.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call