Abstract

To reveal the changes on the stock of the litter layer and its nutrient storage capacity during Moso bamboo expansion in subtropical coniferous and broad-leaved forests, permanent plots were set up in the transitional zone in Wuxie National Park, Zhuji, Zhejiang, China. The plots contained conifer and broad-leaved forests (CFs), transition forests (TFs), and Moso bamboo forests (MFs), which represented three stages of the expansion of Moso bamboo to the surrounding forests. Litter samples were collected and analyzed by un-decomposed, semi-decomposed, and decomposed layers. The stock of the litter layer, the content and storage of the main nutrient elements, and their release rate were measured. It was revealed that the stock of the litter layer and each decomposition layer decreased as the bamboo expands. However, the litter decomposition rate exhibited a positive correlation with the expansion of Moso bamboo, which might be due to the change in the physical properties of the litter. Meanwhile, there were no significant differences in the un-decomposed and semi-decomposed layers of the litter contents of C, N, and P between the three forests, but the contents of C, N, and P in the decomposed layer gradually decreased with the expansion of Moso bamboo. There were no remarkable differences in the N content, C/N, C/P, and lignin/N values of the un-decomposed layer of the three forests, indicating that the litter quality was not the principal reason affecting the decomposition rate. The total nutrient storage in the litter layer decreased significantly with the bamboo expansion, and the release rate of nutrient elements increased, which was adverse to the accumulation and storage of the nutrients. The material cycle of the original forest ecosystem is likely to deteriorate gradually with the bamboo expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.