Abstract

Gravimetric adsorption equipment with a microbalance was used to measure the adsorption of volatile organic compounds (VOCs) by activated carbon from 288 to 313 K. VOCs [n-hexane, cyclohexane, 1-hexene, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, acetone, butanone, and 2-pentanone (Pentan-2-one)] were used as adsorbates in the adsorption system. Considering the geometric barrier, the critical diameter, and the boiling point, the adsorption capacities for six-carbon (C6) alkane isomers decrease in the order of n-hexane, 3-methylpentane, and 2-methylpentane. The adsorbates, including nonpolar or weakly polar substances, and substances with smaller geometric obstacles and smaller molecular weights, were more easily adsorbed by the activated carbon. However, the dipole–dipole interactive force at higher pressures resulted in a higher adsorption capacity for 1-hexene than for n-hexane. Both polarity and molecular size should be considered in the analysis of the adsorption of ketones by activated carbon. The adsorption equilibrium constants decreased with increases in temperature because a higher temperature was unfavorable for adsorption. The results for the Toth adsorption isotherm model fitted by the adsorption data showed that the experimental data and the Toth adsorption isotherm model were consistent with each other, as evidenced by the low deviation between the experimental data and those from the fitted model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.