Abstract
Our objective was to compare protein profiles of cerebrospinal fluid between control animals and those subjected to cardiopulmonary bypass after moderate versus deep hypothermic circulatory arrest with selective cerebral perfusion. Immature Yorkshire piglets were assigned to one of four study groups: (1) deep hypothermic circulatory arrest at 18 degrees C, (2) deep hypothermic circulatory arrest at 18 degrees C with selective cerebral perfusion, (3) moderate hypothermic circulatory arrest at 25 degrees C with selective cerebral perfusion, or (4) age-matched control animals without surgery. Animals undergoing cardiopulmonary bypass were cooled to their assigned group temperature and exposed to 1 hour of hypothermic circulatory arrest. After arrest, animals were rewarmed, weaned off bypass, and allowed to recover for 4 hours. Cerebrospinal fluid collected from surgical animals after the recovery period was compared with cerebrospinal fluid from controls by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein spectra were analyzed for differences between groups by Mann-Whitney U test and false discovery rate analysis. Baseline and postbypass physiologic parameters were similar in all surgical groups. A total of 194 protein peaks were detected. Compared with controls, groups 1, 2, and 3 had 64, 100, and 13 peaks that were significantly different, respectively (P < .05). Three of these peaks were present in all three groups. Cerebrospinal fluid protein profiles in animals undergoing cardiopulmonary bypass with moderate hypothermic circulatory arrest (group 3) were more similar to controls than either of the groups subjected to deep hypothermia. The mass spectra of cerebrospinal fluid proteins are altered in piglets exposed to cardiopulmonary bypass and hypothermic circulatory arrest. Moderate hypothermic circulatory arrest (25 degrees C) with selective cerebral perfusion compared with deep hypothermic circulatory arrest (18 degrees C) is associated with fewer changes in cerebrospinal fluid proteins, when compared with nonbypass controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.