Abstract
Experiments were performed to study the effects of hypoxia on the characteristics of premature action potentials of rabbit papillary muscles. At normal resting potential, the duration of the premature action potential at the shortest coupling intervals was always greater than that of the control response. As the coupling interval was increased beyond 150 ms, the duration of the premature action potential regained control values. In cells depolarized to -70 mV by KCl, early lengthening of the premature response was attenuated. After 60 min of hypoxia, recovery of action potential duration at normal and reduced resting potentials was accelerated. The maximum rate of depolarization and its reactivation time constant were not affected by 60 min of hypoxia. It is suggested that intracellular free Ca is important in the control of action potential duration via the outward background potassium current.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have