Abstract

The mechanical properties and high temperature oxidation behaviors of 9Cr2WVTa steels with Mn contents in the range of 0.04–0.93 wt% were investigated. There are no obvious differences in the tensile properties at room temperature and high temperature, only a slight reduction in the impact toughness when Mn content reaches 0.93 wt%. Remarkably, the high temperature oxidation resistance is significantly improved with an increase of Mn content. After 500 h of oxidation, a (Fe0.6Cr0.4)2O3 oxide scale is developed on the steel with 0.04 wt% Mn, Mn1.5Cr1.5O4 oxides are occasionally detected when Mn content reaches 0.47 wt%, while a thin compact scale with a mixture of Mn1.5Cr1.5O4 and Cr1.3Fe0.7O3 oxides is formed on the steel containing 0.93 wt% Mn. Addition of Mn promotes the formation of Mn-oxides, which lowers oxygen partial pressure and accelerates external oxidation of Cr. At last, the presence of Mn-Cr spinels and Cr-rich oxides improves the oxidation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.