Abstract

Aluminum is a common environmental neurotoxin. Aluminum ions can cross the blood-brain barrier and accumulate in different brain regions, damage brain tissue, and cause cognitive impairment, but the molecular mechanism of aluminum neurotoxicity is not precise. This study investigated the effects of miR-204-5p, target gene EphB2, and downstream signaling pathway NMDAR-ERK-CREB-Arc on cognitive dysfunction induced by aluminum exposure. The results showed that the learning and memory of the rats were impaired in behavior. The accumulation of aluminum in the hippocampus resulted in the damage of nerve cell morphology in the CA1 region of the hippocampus. The expression level of miR-204-5p was increased, and the mRNA and protein expressions of EphB2, NMDAR2B, ERK1/2, CREB, and Arc were decreased. The results indicated that the mechanism of impaired learning and memory induced by aluminum exposure might promote the expression of miR-204-5P and further inhibit the expression of the target gene EphB2 and its downstream signaling pathway NMDAR-ERK-CREB-Arc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call