Abstract
A prospective, randomized laboratory investigation. To investigate whether administration of minocycline attenuates hind-limb motor dysfunction and gray and white matter injury after spinal cord ischemia. Minocycline, a semisynthetic tetracycline antibiotic, has been shown to have neuroprotective effects in models of focal and global cerebral ischemia. However, there have been no data available regarding the effects of minocycline in a model of spinal cord ischemia. Thirty-six rats were randomly allocated to one of three groups; control (C) group (n = 11), minocycline (M) group (n = 13), or sham group (n = 12). Minocycline or saline was intraperitoneally administered for 3 days beginning at 12 hours before 10 minutes of spinal cord ischemia or sham operation. Spinal cord ischemia was induced with intraaortic balloon catheter and blood withdrawal. Seventy-two hours after reperfusion, hind-limb motor functions were assessed using Basso, Beattie, Bresnahan (BBB) Scale (0 = paraplegia, 21 = normal). For histologic assessments, the gray and white matter injury was evaluated using the number of normal neurons and the extents of vacuolations in the white matter, respectively. Activated microglia was also evaluated using Iba-1 immunohistochemistry. BBB scores and the numbers of normal neurons in the M group were significantly higher than those in the C group. The percentage areas of vacuolations in the white matter and the number of Iba-1 positive cells were significantly lower in the M group compared with those in the C group. The results indicated that minocycline administration improved hind-limb motor function and attenuated gray and white matter injury and microglial activation after spinal cord ischemia in rats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have