Abstract

This paper describes an investigation about the fluid delivery method that minimizes the generation of hydrodynamic pressure and that improves grinding accuracy. Traditionally, grinding fluid is delivered for the purpose of cooling, chip flushing and lubrication. Hence, numbers of conventional investigations are focused on the delivery method to maximize fluid flux into the contact arc between grinding wheel and workpiece. It is already known that hydrodynamic pressure generates due to this fluid flux, and that it affects overall grinding resistance and machining accuracy. Especially in the ultra-precision mirror grinding process that requires extremely small amount of cut per each pass, its influence on the machining accuracy becomes more significant. Therefore, in this paper, a new delivery method of grinding fluid is proposed on the point of minimizing hydrodynamic pressure effect. Experimental data indicate that the proposed method is effective not only to minimize the hydrodynamic pressure but also to improve machining accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.