Abstract

This paper describes an investigation about the grinding fluid optimization supply based on lubrication theory. The models for three-dimensional hydrodynamic flow pressure in contact zone between wheel and work were presented based on Navier-Stokes equation and continuous formulae. It is well known that hydrodynamic fluid pressure generates due to this fluid flux, and that it affects overall grinding resistance and machining accuracy. Moreover, conventional methods of delivering grinding fluid, i.e. flood delivery via a shoe or jet delivery tangential to the wheel via a nozzle, have been validated that can not fully penetrate this boundary layer and, thus, the majority of the cutting fluid is deflected away from the grinding zone. Therefore, in this paper, a new delivery method of grinding fluid that the minimum quantity lubricant (MQL) not only that reduces hydrodynamic lift force but also that reduces grinding fluid cost to achieved green manufacturing. Experiment was carried out to evaluate the performance of the MQL technology compared with conventional flood cooling. Experimental data indicate that the proposed method is not negatively affect the surface integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.