Abstract

This study was conducted to understand the biological effects of microplastics (MPs), polystyrene microspheres (PSM), and polyethylene microparticles (PEM) in the juveniles of the giant river prawn, Macrobrachium rosenbergii. The PSM (0.5-1.0µm) and PEM (30.0-150.0µm) were separately incorporated into the artificial diets with concentrations of 1, 5, and 10mg per 100g. The prawns were fed with these diets for a period of 60days. Compared with control, the following dose-dependent changes have been recorded in PSM and PEM incorporated feeds fed prawns: declines in the survival rate, length and weight gains; increase in activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione s-transferase, and glutathione peroxidase (GPx); elevated concentrations of reduced glutathione (GSH) and malondialdehyde; decreased activities of metabolic enzymes, such as glutamic oxaloacetic transaminase and glutamic pyruvic transaminase; higher total RNA in hepatopancreas (HP) of PSM fed prawns compared with that of PEM; higher total RNA in muscle (MU) of PEM-fed prawns compared with that of PSM; prominent cDNA bands in 150bp regions; up-regulated heat shock protein (HSP70) gene in HP; down-regulation of HSP70 gene in MU of PSM-fed prawns only; down-regulated myostatin (MSTN) gene. These results suggest that these MPs have affected the survival and growth, activated the antioxidant defense, inhibit the metabolic enzymes, positively regulated the HSP70 gene, and negatively regulated the MSTN gene in M. rosenbergii. Therefore, exposures to PSM and PEM caused biological effects in this species of prawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.