Abstract

PM2.5 retrieval from satellite-observed aerosol optical depth (AOD) is still challenging due to the strong impact of meteorology. We investigate influences of meteorology changes on the inter-annual variations of AOD and surface PM2.5 in China between 2006 and 2017 using a nested 3D chemical transport model, GEOS-Chem, by fixing emissions at the 2006 level. We then identify major meteorological elements controlling the inter-annual variations of AOD and surface PM2.5 using multiple linear regression. We find larger influences of meteorology changes on trends of AOD than that of surface PM2.5. On the seasonal scale, meteorology changes are beneficial to AOD and surface PM2.5 reduction in spring (1–50%) but show an adverse effect on aerosol reduction in summer. In addition, major meteorological elements influencing variations of AOD and PM2.5 are similar between spring and fall. In winter, meteorology changes are favorable to AOD reduction (−0.007 yr−1, −1.2% yr−1; p < 0.05) but enhanced surface PM2.5 between 2006 and 2017. The difference in winter is mainly attributed to the stable boundary layer that isolates surface PM2.5 from aloft. The significant decrease in AOD over the years is related to the increase in meridional wind speed at 850 hPa in NCP (p < 0.05). The increase of surface PM2.5 in NCP in winter is possibly related to the increased temperature inversion and more stable stratification in the boundary layer. This suggests that previous estimates of wintertime surface PM2.5 using satellite measurements of AOD corrected by meteorological elements should be used with caution. Our findings provide potential meteorological elements that might improve the retrieval of surface PM2.5 from satellite-observed AOD on the seasonal scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call