Abstract

AbstractOf late, a significant amount of research has been carried out using metals for conductive fabrics and composites to obtain the desired level of electromagnetic shielding along with physical and mechanical properties for its durability. However, incorporating these metallic filaments as core or as an integral part of core deteriorate the mechanical properties of textile yarns and ultimately the fabrics’. Moreover, the transparency of fabrics to high frequency/smaller wavelength waves further increases with the attempt to increase the metallic filament diameter. This study, therefore analyses the effects of metallic filament alignment in order to improve the mechanical properties of the resultant hybrid yarns, and devises an alternative method to increase the amount of conductive filament without increasing the diameter of the conducting wire in hybrid yarn structures. The results suggest that the tensile properties of the proposed hybrid cover yarns with conductive filament as covering component is superior as compared to the yarns having a conductive filament in the core, however, the electrical resistance increases with an increase in conductive filament length. The tenacity, elongation and initial modulus values were enhanced several times by incorporating the conductive filament as spiral covering. Moreover, with the proposed alignment method, the amount of copper in hybrid yarn can be increased up to some extent by changing the number of turns of covering component.

Highlights

  • With the advent in technology, the reduction in the size of circuits has created smaller but more powerful sources for electromagnetic (EM) radiation emissions

  • This study analyses the effects of metallic filament’s alignment in order to improve the mechanical properties of the resultant hybrid yarns and devises an alternative method to increase the amount of conductive filament without increasing the diameter of the conductive wire in hybrid yarn structures

  • The copper wires were obtained from the open market manufactured by FE Magnet Wire Company, Malaysia

Read more

Summary

Introduction

With the advent in technology, the reduction in the size of circuits has created smaller but more powerful sources for electromagnetic (EM) radiation emissions. These electronic/electrical devices have surrounded our everyday environment in close proximity. The electromagnetic radiation is already categorized as the fourth most serious source of public pollution following the noise, air and water pollution (Ozen et al 2012). This pollution is mainly attributed to the ever-increasing use of wireless communications all around the globe.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.