Abstract
Chaotic optical communication at 2.5 Gb/s is experimentally investigated using three major encoding and decoding schemes, namely chaos shift keying (CSK), chaos masking (CMS), and additive chaos modulation (ACM). The effects of message encoding and decoding on the chaotic dynamics, the chaos synchronization, and the chaotic communication performance are compared among the three schemes. In the schemes of CSK and ACM, it is found that a small amount of message injected into the chaotic dynamics can increase the complexity of the chaotic state dramatically. In the CMS scheme, the chaotic dynamics are found not to be influenced by the encoded message. The synchronization quality deteriorates dramatically with an increase in the message strength in CSK and CMS. The ACM scheme is found to have the best synchronization quality among the three schemes when there is an encoded message. Message recovery is demonstrated for each of the three schemes. The ACM scheme is found to have the best communication performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.