Abstract

Basic issues regarding synchronized chaotic optical communications at high bit rates using semiconductor lasers are considered. Recent experimental results on broadband, high-frequency, phase-locked chaos synchronization, and message encoding-decoding at 2.5 Gb/s are presented. System performance at a bit rate of 10 Gb/s is numerically studied for the application of three encryption schemes, namely chaos shift keying, chaos masking, and additive chaos modulation, to three chaotic semiconductor laser systems, namely the optical injection system, the optical feedback system, and the optoelectronic feedback system. By causing synchronization error in the forms of synchronization deviation and desynchronization bursts, the channel noise and the laser noise both have significant effects on the system performance at high bit rates. Among the three laser systems, the optoelectronic feedback system has the best performance while the optical feedback system has the worst. Among the three encryption schemes, only the performance of additive chaos modulation with low-noise lasers is acceptable at high bit rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.