Abstract
One of the main pathological symptoms of early diabetic retinal neuropathy is retina neuronal apoptosis. In the present work we investigated the effects of indoleamine hormone melatonin, a powerful free radical scavenger, on streptozotocin-induced retina neuronal cell apoptosis in high blood glucose rat. After melatonin treatment (10mg/kg/day), tunel detection was used to monitor the apoptosis rate of neurons in the retinal ganglion cell layer; reversed quantitative PCR was used to measure the mRNA expression of retinal caspase-3, Mn superoxidase dismutase (SOD) and Cu-Zn SOD; and the activities of total SOD (T-SOD) and sub-type SOD was detected using xanthine oxidase enzymatic detection. Our data showed that melatonin treatment leads to a decrease of retinal cell apoptosis and the apoptotic index was (1.67±0.54)% and (7.73±0.95)% at 8 and 12weeks after treatment. The relative quantitative (RQ) value for caspase-3 mRNA expression was (6.996±1.192) and (7.267±1.178) in melatonin group, which are much lower than the values of diabetic group (12.566±2.272 and (14.297±2.110) at 8 and 12weeks, respectively) under the same condition. mRNA expression of Mn SOD and Cu-Zn SOD as well as their activities all decreased in the diabetic group compared with the control group. While melatonin treatment induced the expression of Mn SOD mRNA and a continual increase of Mn SOD activity as well as the activity and mRNA expression of Cu-Zn SOD at 12weeks. Therefore, our results demonstrate that melatonin treatment prevented the decrease in mRNA expression of SOD and the increase in caspase-3 mRNA expression induced by diabetes thus exerts a beneficial effect on retina neuronal apoptosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have