Abstract

The microstructure property relations of several Pb-free solders are investigated to understand the microstructural changes during thermal and mechanical processes of Pb-free solders. The Pb-free solder alloys investigated include pure Sn, Sn-0.7% Cu, Sn-3.5% Ag, and Sn-3.8% Ag-0.7% Cu (in weight percent). To reproduce a typical microstructure observed in solder joints, the cooling rate, ingot size, and reflow conditions of cast alloys were carefully controlled. The cast-alloy pellets are subjected to compressive deformation up to 50% and annealing at 150°C for 48 h. The microstructure of Pb-free solders is evaluated as a function of alloy composition, plastic deformation, and annealing. The changes in mechanical property are measured by a microhardness test. The work hardening in Sn-based alloys is found to increase as the amount of alloying elements and/or deformation increases. The changes in microhardness upon deformation and annealing are correlated with the microstructural changes, such as recrystallization or grain growth, in Pb-free solder alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.