Abstract

Avian egg production demands resources such as lipids and proteins. Relative egg size and mass varies across species, reflecting differences in maternal investment. This variability may affect the maternal transfer of anthropogenic pollutants including lipophilic polychlorinated biphenyls (PCBs) and protein-associated per- and polyfluoroalkyl substances (PFASs) and mercury (Hg). We conducted a meta-analysis on seabirds and investigated whether interspecies variation in maternal investment contributes toward skewed pollutant concentration ratios between males and females, as Cmale/Cfemale (80 studies). Overall concentrations of PCBs and perfluorooctanesulfonic acid (PFOS) were 1.6 and 1.3 times higher, respectively, in males than females, whereas mercury was similar between sexes. Few studies compared females and eggs ( n = 6), highlighting a knowledge gap. We found that an increasing maternal investment as a clutch-to-female mass ratio resulted in lower PCB concentrations in females than in males during the incubation period, but no sex-specific differences were observed for mercury and PFOS. Egg production is both a lipid dominated and protein-limited process. Females transfer lipophilic pollutants more easily to eggs, and to a higher degree with increasing maternal investment, but feeding ecology may be more important. Interspecies variation in maternal pollutant transfer may lead to negative effects scaling from an offspring to population level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call