Abstract

AbstractThe effects of material and treatment parameters on airflow resistivity and normal‐incidence sound absorption coefficient (NAC) of compressed three‐layer nonwoven composites have been studied. Material parameters included fiber size and porosity, and treatment factors included applied pressure and duration of compression. Fibers used included poly(lactic acid) (PLA), polypropylene (PP), glassfiber, and hemp. Three‐layered nonwoven composites were classified based on material content and fiber blend. LHL and PGP were sandwiched structures consisting of PLA/Hemp/PLA and PP/glassfiber/PP layers, respectively. PGI consisted of three layers of an intimate blend of PP and glassfiber. Statistical models were developed to predict air flow resistivity from material parameters and the change in air flow resistivity from compression parameters. Independent variables in the first model were porosity and fiber size and, in the latter model, were compressibility, pressure, and initial material parameters. An increase in air flow resistivity was found with increased compression. No significant effect of compression duration was detected. Two additional statistical models were developed for the prediction of sound absorption coefficient based on material and treatment parameters. The independent variables of the first model were air flow resistivity, thickness, and frequency, and those of the second model were compressibility, initial thickness, and initial density of the composite, diameter and density of the fiber, compression pressure, and frequency. A decrease in sound absorption coefficient was detected with increasing compression, while no effect of duration was detected. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call