Abstract

The origin of the rapid quasi-periodic variabilities observed in a number of accreting black hole X-ray binaries is not understood. It has been suggested that these variabilities are associated with diskoseismic oscillation modes of the black hole accretion disk. In particular, in a disk with no magnetic field, the so-called g-modes (inertial oscillations) can be self-trapped at the inner region of the disk due to general relativistic effects. Real accretion disks, however, are expected to be turbulent and contain appreciable magnetic fields. We show in this paper that even a weak magnetic field (with the magnetic energy much less than the thermal energy) can modify or "destroy" the self-trapping zone of disk g-modes, rendering their existence questionable in realistic black hole accretion disks. The so-called corrugation modes (c-modes) are also strongly affected when the poloidal field approaches equal-partition. On the other hand, acoustic oscillations (p-modes), which do not have vertical structure, are not affected qualitatively by the magnetic field, and therefore may survive in a turbulent, magnetic disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.