Abstract
A toy model for magnetic extraction of energy from black hole (BH) accretion disk is discussed by considering the restriction of the screw instability to the magnetic field configuration. Three mechanisms of extracting energy magnetically are involved. (1) The Blandford–Znajek (BZ) process is related to the open magnetic field lines connecting the BH with the astrophysical load; (2) the magnetic coupling (MC) process is related to the closed magnetic field lines connecting the BH with its surrounding disk; and (3) a new scenario (henceforth the DL process) for extracting rotational energy from the disk is related to the open field lines connecting the disk with the astrophysical load. The expressions for the electromagnetic powers and torques are derived by using the equivalent circuits corresponding to the above energy mechanisms. It turns out that the DL power is comparable with the BZ and MC powers as the BH spin approaches unity. The radiation from a quasi-steady thin disk is discussed in detail by applying the conservation laws of mass, energy and angular momentum to the regions corresponding to the MC and DL processes. In addition, the poloidal currents and the current densities in BH magnetosphere are calculated by using the equivalent circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.