Abstract

The effects of magnetic coupling (MC) process on the inner edge of the disc are discussed in detail. It is shown that the inner edge can deviate from the innermost stable circular orbit (ISCO) due to the magnetic transfer of energy and angular momentum between a Kerr black hole (BH) and its surrounding accretion disc. It turns out that the inner edge could move inward and outward for the BH spin $a_{*}$ being greater and less than 0.3594, respectively. The MC effects on disc radiation are discussed based on the displaced inner edge. A very steep emissivity can be provided by the MC process, which is consistent with the observation of MCG-6-30-15. In addition, the BH spins of GRO J1655-40 and GRS 1915+105 are detected by X-ray continuum fitting based on this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.