Abstract

Effects of magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disk are discussed in detail in the following aspects: (i) The mapping relation between the angular coordinate on the BH horizon and the radial coordinate on the disk is modified based on a more reasonable configuration of magnetic field, and a condition for coexistence of the Blandford-Znajek (BZ) and the MC process is derived. (ii) The transfer direction of energy and angular momentum in MC process is described equivalently by the co-rotation radius and by the flow of electromagnetic angular momentum and redshifted energy, where the latter is based on an assumption that the theory of BH magnetosphere is applicable to both the BZ and MC processes. (iii) The profile of the current on the BH horizon and that of the current density flowing from the magnetosphere onto the horizon are given in terms of the angular coordinate of the horizon. It is shown that the current on the BH horizon varies with the latitude of the horizon and is not continuous at the angular boundary between the open and closed magnetic field lines. (iv) The MC effects on disk radiation are discussed, and a very steep emissivity is produced by MC process, which is consistent with the recent XMM-Newton observation of the nearby bright Seyfert 1 galaxy MCG-6-30-15 by a variety of parameters of the BH-disk system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.