Abstract

Fluorescence intensity measurements of ethidium bromide (EB) bound to ribosomal RNA (rRNA) in suspensions of 30S and 50S subunits, of 70S ribosomal particles and of protein-free extracted rRNA are presented. Changes in the intercalation of EB reflect changes in conformation and degree of exposure of rRNA. The effect of removal of magnesium ions on the binding of EB is compared in protein-free rRNA and in ribosomal particles by a Scatchard plot analysis. In free ribosomal RNA the number of bound EBs do not depend on magnesium content, only the association constant is affected. In intact 70S particles and both in the separated 50S and 30S subunits the presence of magnesium greatly reduces binding of EB and no saturation of the fluorescence intensity with rRNA concentration is observed, preventing a Scatchard plot analysis. Removal of magnesium restores a strong EB intercalation. Then magnesium ions induce a conformational change in the 70S particles as well as in the separated subunits. The different behavior of the free-rRNA and of the ribosomal particles indicates that ribosomal proteins are relevant to the structural changes induced by magnesium ions. The comparison of the number of excluded sites and of the association constant in the 30S, 50S subunits and in the 70S particles indicates that even without Mg 2+ ions the two subunits still interact, at variance with the commonly shared opinion that subunits dissociation takes place at low magnesium concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.