Abstract
Tropidoneis maxima is a marine diatom with a rapid growth rate that produces high levels of lipids. To explore whether the lipid content could be further enhanced, cultures were first incubated under optimal conditions and then stressed under low temperature (10°C), a high light intensity level (80 μmol/m2 ·s), and the two factors together (interaction treatment). The results indicated that high light intensity and the temperature-light interaction exhibited greater impacts on lipid synthesis of T. maxima than low temperature. The two stress treatments increased lipid content by 17.16% and 16.6% compared to the control. In particular, higher biomass concentration was obtained with high light intensity (1.082 g L-1 ) and low temperature (1.026 g L-1 ). Moreover, high light intensity (9.06%) and interaction (10.3%) treatments yielded lower starch content compared to low temperature (14.27%) at the end of the stress culture. After 3 days of stress culture, the high light intensity treatment resulted in a 97.01% increase in cell wall thickness and an 18.46% decrease in cell diameter. The results suggest that high light intensity stress on T. maxima would open a new approach to cost-effective biolipid production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.