Abstract

In this paper, the effects of Ni content on the room and elevated temperature (250 °C) tensile strength of Al-7Si-1.5Cu-0.4Mg-0.3Mn-0.1RE-xNi (x = 0, 0.3, 0.6, 0.9 wt.%) alloys were investigated, along with microstructure characterization and tensile testing. In the as-cast state, the dominant Ni-rich phases were primarily the γ-Al7Cu4Ni and δ-Al3CuNi phases. Following the solution heat treatment, a significant reduction in the γ-Al7Cu4Ni phase was noted, accompanied by the emergence of numerous small ε-Al3Ni phases. Both room temperature strength and high temperature strength at 250 °C exhibited a consistent increase with rising Ni content, reaching 405 MPa and 261 MPa, respectively, at 0.9 Ni content, which were increased by 6.4% and 16.8%, respectively, compared with 0 Ni content. The elongation exhibited an oscillating increase within the Ni content range of 0 to 0.6, reaching peak values of 2.6% in room temperature and 4.3% in high temperature at 0.6 Ni, followed by a rapid decline. At 0.6 Ni content, the alloy demonstrated a well-balanced combination of mechanical properties, featuring commendable strength and plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.