Abstract

Investigation of the effects of low glucose concentrations on the oxygen consumption rates of intervertebral disc cells. To determine the oxygen consumption rate of porcine anulus fibrosus (AF) cells at different glucose concentrations and to examine the differences in the oxygen consumption rate between AF and nucleus pulposus (NP) cells at different glucose levels. Poor nutrient supply has been suggested as a potential mechanism for degeneration of the intervertebral disc (IVD). Distribution of nutrients in the IVD is strongly dependent on transport properties of the tissue and cellular metabolic rates. Previous studies have shown dependence of oxygen consumption rate of IVD cells on oxygen tension, pH levels, and glucose levels outside the physiologic range. However, the oxygen consumption rate of AF cells at in vivo glucose levels has not been investigated. IVD cells were isolated from the outer AF and NP of 4- to 5-month-old porcine lumbar discs. The changes in oxygen tension were recorded when cells were cultured in sealed metabolism chamber. The oxygen consumption rate of cells was determined by theoretical curve fitting using the Michaelis-Menten equation. The outer AF cells cultured in high glucose medium (25 mmol/L) exhibited the lowest oxygen consumption rate, whereas no significant differences in oxygen consumption rates were found among outer AF cells cultured at physiologic glucose levels (i.e., 1 mmol/L, 2.5 mmol/L, 5 mmol/L). The oxygen consumption rate of NP cells was significantly greater than that of outer AF cells. Since the oxygen consumption rates determined in this study are comparable to the findings in the literature, this study has developed a new alternative method for determining oxygen consumption rate. The oxygen consumption rates of IVD cells reported in this study will be valuable for theoretically predicting local oxygen concentrations in IVD, which can provide a better understanding of transport of oxygen in the discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call