Abstract
BackgroundAcupuncture has been commonly used for preventing migraine attacks and relieving pain during a migraine, although there is limited knowledge on the physiological mechanism behind this method. The objectives of this study were to compare the differences in brain activities evoked by active acupoints and inactive acupoints and to investigate the possible correlation between clinical variables and brain responses.Methods and ResultsA randomized controlled trial and resting-state functional magnetic resonance imaging (fMRI) were conducted. A total of eighty migraineurs without aura were enrolled to receive either active acupoint acupuncture or inactive acupoint acupuncture treatment for 8 weeks, and twenty patients in each group were randomly selected for the fMRI scan at the end of baseline and at the end of treatment. The neuroimaging data indicated that long-term active acupoint therapy elicited a more extensive and remarkable cerebral response compared with acupuncture at inactive acupoints. Most of the regions were involved in the pain matrix, lateral pain system, medial pain system, default mode network, and cognitive components of pain processing. Correlation analysis showed that the decrease in the visual analogue scale (VAS) was significantly related to the increased average Regional homogeneity (ReHo) values in the anterior cingulate cortex in the two groups. Moreover, the decrease in the VAS was associated with increased average ReHo values in the insula which could be detected in the active acupoint group.ConclusionsLong-term active acupoint therapy and inactive acupoint therapy have different brain activities. We postulate that acupuncture at the active acupoint might have the potential effect of regulating some disease-affected key regions and the pain circuitry for migraine, and promote establishing psychophysical pain homeostasis.Trial RegistrationChinese Clinical Trial Registry ChiCTR-TRC-13003635
Highlights
Migraine is a common neurological disorder that typically manifests as repeated episodes of moderate or severe unilateral, pulsating headache aggravated by routine physical activity and is associated with nausea and/or phonophobia and photophobia [1]
A decrease in Regional homogeneity (ReHo) values was observed after treatment in the bilateral posterior cingulate cortex (PCC) (BA31), middle frontal gyrus (MFG) (BA10), angular gyrus (BA39), precuneus (BA7), middle temporal gyrus (MTG) (BA39), left hippocampus, inferior parietal lobule (BA39), inferior temporal gyrus (ITG) (BA20), and right postcentral gyrus (BA40) (P,0.05, false discovery rate (FDR) corrected with a minimal cluster size of 20 voxels)
A signal decrease in ReHo values was detected in the right MFG (BA6) (P,0.05, FDR corrected with a minimal cluster size of 20 voxels)
Summary
Migraine is a common neurological disorder that typically manifests as repeated episodes of moderate or severe unilateral, pulsating headache aggravated by routine physical activity and is associated with nausea and/or phonophobia and photophobia [1]. Acupuncture has a long history in China as one of the treatment modalities of Traditional Chinese Medicine (TCM) and is increasingly being adopted in the West as a complementary and alternative treatment to prevent migraine attacks and to relieve pain during a migraine. A considerable number of high quality clinical studies have indicated that acupuncture is able to alleviate headache degree and/or improve the QOL [11,12,13]. Despite the popularity of acupuncture in migraine therapy, there persists limited knowledge on the physiological mechanisms behind this method, and some controversy on the superiority of verum acupuncture over sham control. Acupuncture has been commonly used for preventing migraine attacks and relieving pain during a migraine, there is limited knowledge on the physiological mechanism behind this method. The objectives of this study were to compare the differences in brain activities evoked by active acupoints and inactive acupoints and to investigate the possible correlation between clinical variables and brain responses
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have