Abstract

Climate change altered the quantities of aboveground plant litter and root inputs, but the effects on soil CH4 uptake rates and underlying mechanisms remain unclear. To investigate these factors, a three-year detritus input and removal treatment (DIRT) study including six treatments (namely, CK, control; NL, litter removal; DL, double litter; NR, root exclusion; NRNL, root exclusion plus litter removal; and NRDL, root exclusion plus double litter) was conducted in broadleaf and coniferous forest subalpine forest ecosystems. The results showed that both the subalpine forest soils acted as sink for atmospheric CH4 across all treatments, while the broadleaf forest had consistently higher CH4 uptake rates than the coniferous forest. Based on the annual mean values, root exclusion (NR, NRNL and NRDL) significantly decreased soil CH4 uptake rates by 35.9 %, 31.0 % and 43.4 % in the broadleaf forest and 36.7 %, 31.9 % and 40.6 % in the coniferous forest compared with CK treatments, respectively. Meanwhile, the mean soil CH4 uptake rates were significantly reduced by 23.6 % and 17.3 % in the broadleaf forest and the coniferous forest under the DL treatments, respectively; nevertheless, the NL treatment significantly increased soil CH4 uptake rates by 19.68 % and 14.4 %, respectively. The results clearly demonstrated that root exclusion exerted a greater influence on soil CH4 uptake rates than plant litter manipulations. Correlation and redundancy analysis (RDA) revealed that the separation of root exclusion treatments from aboveground plant litter manipulations was based on higher soil water content, NH4+-N and NO3−-N concentrations, and lower DOC (dissolved organic carbon) concentrations and methanotroph pmoA gene abundance. The results suggest that future alterations in aboveground plant litter and root input, particularly a reduction in root input, can exert a stronger influence on regulating soil CH4 uptake than aboveground litter manipulations in subalpine forests with cold and humid climatic conditions in response to future climate scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.