Abstract

To discuss the effects of pesticide viscosity on the atomisation characteristics of an agricultural nozzle, glycerite with different mass fractions was prepared to replace the pesticide. First, the atomisation region of the nozzle was meshed and sized. Second, the speed and kinetic energy of the droplets at different positions in the atomisation region were measured by Phase Doppler Anemometry. The results demonstrated that the Sauter mean diameter, volume mean diameter and arithmetic mean diameter of droplets first decreased and then increased gradually in the axial direction of the atomisation region. Surface waves of a certain pattern were formed on the liquid surface, which was ejected by the disturbance of external air resistance. As the distance increased, the amplitude increased and the wave crest was broken into small droplets. These droplets then collided and agglomerated into large droplets under the effect of gravity. Droplets had an approximately symmetric distribution on the radial direction of the atomisation region, and the droplets were small in the middle and large at the two ends. The droplet size was positively related to the radial distance. Compared with the droplet speed at the two ends, the droplet speed at the axis was higher and the droplet size was smaller. Moreover, the kinetic energy of the droplets along the axial direction decreased sharply and then increased slowly. Droplets with high viscosity at the near end of the nozzle had small kinetic energy, and the effects of liquid viscosity on the atomisation characteristics of a nozzle could not be neglected. The droplet kinetic energy slightly increased at the far end.

Highlights

  • One major standard of high-efficiency pesticide application technology is that pesticide deposition on the target is far higher than that for other target objects or regions

  • The results demonstrated that the Sauter mean diameter, volume mean diameter and arithmetic mean diameter of droplets first decreased and increased gradually in the axial direction of the atomisation region

  • The variation curve of droplet parameters with viscosity along the axial direction of the nozzle was drawn according to test data to intuitively understand the

Read more

Summary

Introduction

One major standard of high-efficiency pesticide application technology is that pesticide deposition on the target is far higher than that for other target objects or regions. This increased deposition increases the utilisation of pesticides to a maximum extent and is an important way to eliminate damages of pesticides on operators and relieve environmental pollution [1] [2] [3]. Pesticide atomisation is a process where pesticide disperses into the atmosphere as droplets to form a mist dispersion system. Small droplets help increase pesticide coverage, droplet coverage uniformity and liquid penetrability of the crop canopy [16] [17] [18] [19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.