Abstract

A scaled-down experimental apparatus was built to examine smelt shattering during typical recovery boiler operations. Water-glycerine solutions and air were used in place of smelt and steam. A high-speed camera and image processing software were used to record and quantify liquid shattering in terms of droplet number and size distributions, as a function of air velocity, air nozzle position, liquid flow rate, and liquid viscosity. The results showed that increasing shatter jet velocity reduced average droplet size, increasing the liquid flow rate increased droplet size, and placing the shatter jet nozzle closer to the liquid stream decreased droplet size. These results were all as expected. The effect of liquid viscosity (1-50 cP) depended on the shatter jet velocity. At high air velocities, even the viscous liquid was well shattered, but at lower velocities, the effect of viscosity on shattering was significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call