Abstract
In this study, three low-temperature solid oxide fuel cells are constructed using Ce0.8Sm0.2O2−δ (SDC) as the electrolyte and Ni–LiNi0.8Co0.15Al0.05O2 (Ni–NCAL) and Ni–Ag as the electrodes. Cell A with symmetrical Ni–NCAL electrodes exhibits the best electrochemical performance. During operation, the Ni–NCAL anode is reduced by H2atmosphere to form LiOH and Li2CO3. The Li2CO3–LiOH melt produced at >450 °C permeates the SDC electrolyte layer, causing its densification and grain growth in addition to the Li+-ion doping of SDC grains. The maximum electrical conductivity of the Li+-ion-doped SDC at 550 °C is at least one order of magnitude smaller than that of the SDC–Li2CO3–LiOH composite electrolyte (0.331 S cm−1). The ohmic and polarization resistances of Cell A at 550 °C are 0.168 and 0.256 Ω cm2, respectively, and its open-circuit voltage is 1.065 V, indicating the presence of dense SDC electrolyte and electron-blocking layers. The maximum power density of the cell at 550 °C is 535.2 mW·cm−2, which is primarily due to the high catalytic activity for the hydrogen oxidation and oxygen reduction reactions at the electrodes and large electrical conductivity of the SDC–Li2CO3–LiOH composite electrolyte at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.