Abstract

In this work, solid oxide fuel cells were fabricated by ink-jet printing. The cells were characterized in order to study the resulting microstructure and electrochemical performance. Scanning electron microscopy revealed a highly conformal 6–12 μm thick dense yttria-stabilized zirconia electrolyte layer, and a porous anode-interlayer. Open circuit voltages ranged from 0.95 to 1.06 V, and a maximum power density of 0.175 W cm −2 was achieved at 750 °C. These results suggest that the ink-jet printing technique may be used to fabricate stable SOFC structures that are comparable to those fabricated by more conventional ceramics processing methods. This study also highlights the significance of overall cell microstructural impact on cell performance and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.