Abstract
This study investigates the effects of limiting current density and current step rate on the microstructure and hardness of current-step flash-sintered (CS-FS) disc-shaped MgAl2O4 ceramics. The results indicated that, unlike conventional flash sintering, the temperature of the sample during the current-step flash started at a lower initial value and subsequently increased gradually. Furthermore, the differences in oxygen vacancies between the positive and negative sides of the CS-FS-ed MgAl2O4 ceramics were significantly reduced. This led to the CS-FS samples exhibiting higher relative density, finer grain size, a more uniform microstructure, and increased hardness. The homogeneous microstructure resulted in consistent hardness across both sides of each CS-FS-ed sample. Additionally, as the limiting current density increased, the grain sizes near the positive and negative sides gradually enlarged, while the relative density initially increased before decreasing. A similar trend was observed when the current step rate decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.