Abstract
Cancer patients often suffer from dyspnea the pathogenesis of which is incompletely understood. Both dyspnea and pulmonary diseases are closely linked to airway innervation. Recently, it was shown that Lewis lung carcinoma induces cardiac hypoinnervation in the mouse. We hypothesized that airway innervation undergoes similar changes as myocardial innervation and that this effect occurs in different mouse models of cancer. C57Bl6 mice were randomly assigned to subcutaneous injection of Lewis lung carcinoma cells (LLC, n=6), B16 melanoma cells (B16, n=6), or saline (control group, C, n=10). After 16 or 21 days, respectively, the trachea was processed for light and electron microscopic design-based stereology and the volume, surface area and length of axons ramifying in the tracheal wall were estimated. Body weight was reduced both in LLC and B16 vs. C. Hypoinnervation was present in both tumor groups compared to controls as volume and surface area of axons were significantly reduced in LLC and B16. However, the total length of tracheal axons and the mean number of axons per nerve fiber were reduced only in LLC but not in B16 compared to C indicating a differentially pronounced effect of cancer on tracheal innervation. In conclusion, reduced innervation of the trachea was observed in two different murine tumor models. These findings add to the pathophysiological concepts explaining cancer-related dyspnea and open new perspectives of treating this symptom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.