Abstract

Changes in gas exchange with leaf age and fruit growth were determined in lychee trees (Litchi chinensis Sonn.) growing in subtropical Queensland (27 degrees S). Leaves expanded in a sigmoid pattern over 50 days during spring, with net CO2 assimilation (A) increasing from -4.1 +/- 0.9 to 8.3 +/- 0.5 micromol m-2 s-1 as the leaves changed from soft and red, to soft and light green, to hard and dark green. Over the same period, dark respiration (Rd) decreased from 5.0 +/- 0.8 to 2.0 +/- 0.1 micromol CO2 m-2 s-1. Net CO2 assimilation was above zero about 30 days after leaf emergence or when the leaves were half fully expanded. Chlorophyll concentrations increased from 0.7 +/- 0.2 mg g-1 in young red leaves to 10.3 +/- 0.7 mg g-1 in dark green leaves, along with stomatal conductance (gs, from 0.16 +/- 0.09 to 0.47 +/- 0.17 mol H2O m-2 s-1). Fruit growth was sigmoidal, with maximum values of fresh mass (29 g), dry mass (6 g) and fruit surface area (39 cm2) occurring 97 to 115 days after fruit set. Fruit CO2 exchange in the light (Rl) and dark (Rd) decreased from fruit set to fruit maturity, whether expressed on a surface area (10 to 3 micromol CO2 m-2 s-1 and 20 to 3 micromol CO2 m-2 s-1, respectively) or on a dry mass basis (24 to 2 nmol CO2 g-1 s-1 and 33 to 2 nmol CO2 g-1 s-1, respectively). Photosynthesis never exceeded respiration, however, the difference between Rl and Rd was greatest in young green fruit (4 to 8 micromol CO2 m-2 s-1). About 90% of the carbon required for fruit growth was accounted for in the dry matter of the fruit, with the remainder required for respiration. Fruit photosynthesis contributed about 3% of the total carbon requirement of the fruit over the season. Fruit growth was mainly dependent on CO2 assimilation in recently expanded dark green leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call