Abstract

This paper compares the wake characteristics and aerodynamic forces for spanwise-tensioned membranes with free and fixed leading edges (LE). LE vibration was generated by placing the membrane within an air flow with a sufficient onset velocity. The flow velocity in the wake of the free or fixed LE membrane was measured using a hot-wire anemometer sensor placed downstream of the trailing edge (TE), and the aerodynamic forces were measured using a pair of load cells. The silicone rubber membrane wings were tested at varying angles-of-attack (−8 to 40°), applied strain (2 to 8%), and a nominal Reynolds number of 55,000. The force results show that the LE vibration increased the lift coefficient but also induced a higher drag penalty, particularly in the pre-stall region, resulting in a lower aerodynamic efficiency than the fixed-LE membranes. As indicated by the hot-wire results, this was due to a considerable broadening of the wake caused by the free LE and a breakdown of the organized fluid-structure interaction and energy spectrum compared to a fixed LE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.