Abstract

The aerodynamic forces and moments of a flexible delta wing in pitching motion were experimentally studied in a low-speed wind tunnel. Three types of flexible delta wing were investigated, the flexible parts of which were 44, 70 and 99% of the delta wing. Aerodynamic characteristics were different among the three types of flexible and completely hard delta wing, and it was found that the winding-up of the leading edge of the delta wing is the key factor for determining the leading edge vortex on the upper side of the wing and the pressure distribution on the windward side. Lift, drag, and pitching moment formed a hysteresis loop with an angle of attack in pitching motion, particularly in a region with a large attack angle, accompanied by leading edge vortex breakdown. The flow visualization of leading edge vortices was also carried out to explain the dynamic characteristics of the delta wings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call