Abstract

Electromagnetic pulse propagation in a quantum metamaterial, an artificial, globally quantum coherent optical medium, is numerically simulated. We show that a one-dimensional quantum metamaterial based on superconducting quantum bits, initialized in an easily reachable factorized excited state, demonstrates lasing in the microwave range, accompanied by the chaotization of qubit states and generation of higher harmonics. These effects may provide a tool for characterization and optimization of quantum metamaterial prototypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.