Abstract

In the hard core limit, interacting vortices in planar type II superconductors can be modeled as non-interacting one dimensional fermions propagating in imaginary time. We use this analogy to derive analytical expressions for the probability density and imaginary current of vortex lines interacting with an isolated bent line defect and to understand the pinning properties of such systems. When there is an abrupt change of the direction of the pinning defect, we find a sinusoidal modulation of the vortex density in directions both parallel and perpendicular to the defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.