Abstract

To decrease energy consumption and improve the performance of micro-arc oxidation (MAO) films on 6063 Al alloy, a policy of K2TiF6 additive and electrolyte temperature control was adapted. The specific energy consumption relied on the K2TiF6 additive and more particularly on the electrolyte temperatures. Scanning electron microscopy demonstrates that electrolytes with 5 g/L K2TiF6 can effectively seal the surface pores and increase the thickness of the compact inner layer. Spectral analysis shows that the surface oxide coating consists of γ-Al2O3 phase. Following 336 h of the total immersion process, the impedance modulus of the oxidation film, prepared at 25 °C (Ti5-25), remained 1.08 × 106 Ω·cm2. Moreover, Ti5-25 has the best performance/energy-consumption ratio with a compact inner layer (2.5 ± 0.3 μm). This research found that the time of the big arc stage increased with the temperature, resulting in producing more internal defects in the film. In this work, we employ a dual-track strategy of additive and temperature providing an avenue to reduce the energy consumption of MAO on alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call