Abstract

The effects of increasing the extracellular K+ concentration on the capacity to generate action potentials and to contract were tested on unfatigued muscle fibers isolated from frog sartorius muscle. The goal of this study was to investigate further the role of K+ in muscle fatigue by testing whether an increased extracellular K+ concentration in unfatigued muscle fibers causes a decrease in force similar to the decrease observed during fatigue. Resting and action potentials were measured with conventional microelectrodes. Twitch and tetanic force was elicited by field stimulation. At pHo (extracellular pH) 7.8 and 3 mmol K+.L-1 (control), the mean resting potential was -86.6 +/- 1.7 mV (mean +/- SEM) and the mean overshoot of the action potential was 5.6 +/- 2.5 mV. An increased K+ concentration from 3 to 8.0 mmol.L-1 depolarized the sarcolemma to -72.2 +/- 1.4 mV, abolished the overshoot as the peak potential during an action potential was -12.0 +/- 3.9 mV, potentiated the twitch force by 48.0 +/- 5.7%, but did not affect the tetanic force (maximum force) and the ability to maintain a constant force during the plateau phase of a tetanus. An increase to 10 mmol K+.L-1 depolarized the sarcolemma to -70.1 +/- 1.7 mV and caused large decreases in twitch (31.6 +/- 26.1%) and tetanic (74.6 +/- 12.1%) force. Between 3 and 9 mmol K+.L-1, the effects of K+ at pHo 7.2 (a pHo mimicking the change in interstitial pH during fatigue) and 6.4 (a pHo known to inhibit force recovery following fatigue) on resting and action potentials as well as on the twitch and tetanic force were similar to those at pHo 7.8. Above 9 mmol K+.L-1 significant differences were found in the effect of K+ between pHo 7.8 and 7.2 or 6.4. In general, the decrease in peak action potential and twitch and tetanic force occurred at higher K+ concentrations as the pHo was more acidic. The results obtained in this study do not support the hypothesis that an accumulation of K+ at the surface of the sarcolemma is sufficiently large to suppress force development during fatigue. The possibility that the K+ concentration in the T tubules reaches the critical K+ concentration necessary to cause a failure of the excitation-contraction coupling mechanism is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call