7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/brb3.591
Copy DOIJournal: Brain and Behavior | Publication Date: Oct 11, 2016 |
Citations: 55 | License type: CC BY 4.0 |
IntroductionCorrelated low‐frequency fluctuations of resting‐state functional magnetic resonance imaging (rsfMRI) signals have been widely used for inferring intrinsic brain functional connectivity (FC). In animal studies, accurate estimate of anesthetic effects on rsfMRI signals is demanded for reliable interpretations of FC changes. We have previously shown that inter‐regional FC can reliably delineate local millimeter‐scale circuits within digit representations of primary somatosensory cortex (S1) subregions (areas 3a, 3b, and 1) in monkeys under isoflurane anesthesia. The goals of this study are to determine (1) the general effects of isoflurane on rsfMRI signals in the S1 circuit and (2) whether the effects are functional‐ and regional‐ dependent, by quantifying the relationships between isoflurane levels, power and inter‐regional correlation coefficients in digit and face regions of distinct S1 subregions.MethodsFunctional MRI data were collected from male adult squirrel monkeys at three different isoflurane levels (1.25%, 0.875%, and 0.5%). All scans were acquired on a 9.4T magnet with a 3‐cm‐diameter surface transmit‐receive coil centered over the S1 cortex. Power and seed‐based inter‐regional functional connectivity analyses were subsequently performed.ResultsAs anesthesia level increased, we observed (1) diminishing amplitudes of signal fluctuations, (2) reduced power of fluctuations in the low‐frequency band used for connectivity measurements, (3) decreased inter‐voxel connectivity around seed regions, and (4) weakened inter‐regional FC across all pairs of regions of interest (digit‐to‐digit). The low‐frequency power measures derived from rsfMRI signals from control muscle regions, however, did not exhibit any isoflurane level‐related changes. Within the isoflurane dosage range we tested, the inter‐regional functional connectivity differences were still detectable, and the effects of isoflurane did not differ across region‐of‐interest (ROI) pairs.ConclusionOur data demonstrate that isoflurane induced similar dose‐dependent suppressive effects on the power of rsfMRI signals and local fine‐scale FC across functionally related but distinct S1 subregions.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.