Abstract

Gallium nitride (GaN) has attracted great attention as a structural material for advanced microelectromechanical systems (MEMS), thanks to its excellent ensemble of electrical and mechanical properties. Here, we report on studying the effects of ion radiation-induced displacement damage on resonant MEMS made of GaN film grown on aluminum nitride (AlN) buffer layer. We design and fabricate GaN/AlN heterostructure doubly-clamped microstring resonators with length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L \,\, =100$ </tex-math></inline-formula> , 200, 300, 400, 500, 600, and 700 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> , and irradiate the devices with 440-keV Ar <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{+}$ </tex-math></inline-formula> ions, to probe the effects of ion radiation-induced displacement damage on the resonance behavior. The ion energy and range have been selected so that the ions would stop within the GaN layer, thus allowing diagnostics to show the effects of damage in the structure. The multimode resonance frequencies of the devices decrease significantly ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\vert \Delta f\vert /f &gt;50$ </tex-math></inline-formula> %) with the increase of fluence beyond 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">14</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−2</sup> . According to scanning electron microscopy (SEM) imaging, the irradiated GaN/AlN resonators are visibly deformed at high fluence, where the amount of curvature increases monotonically with the fluence. The deformation of the structures can be ascribed to the change in both Young’s modulus and built-in stress resulting from ion radiation-induced displacement damage. The results extend the understanding of radiation-induced damage mechanisms in resonant MEMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call